3个回答
2018-12-06 · 在绝望中寻找希望,人生终将辉煌!
天津新东方
【天津新东方培训机构】是新东方在天津的官方培训机构,也是天津当地最著名的培训机构。先进的国际教育理念,一流的教师队伍,为您提供专业优质的天津英语培训、天津小升初、中高考、考研以及留学服务。
向TA提问
关注
展开全部
这道题截图有点模糊,问题应该问的是BQ的最小值,所以这里也按照这个问题来进行解答。
建议以坐标系来进行解题,假设A点为原点(0,0)P点为(x',2)则此时DP=x'(0≤x'≤3)
B,C,D三点坐标也均可以表示出来,然后可以得到圆的轨迹:
(X-x'/2)²+(Y-2)²=x'²/4
通过P点坐标和A点坐标,也可以得到AP的直线方程:Y=(2/x')X
联立两个式子解方程,可以得到两个解:X=x'和X=8x'/(2x'²+8)
可以发现第一个坐标刚好是P点,而第二个坐标则为Q点,然后根据B点坐标和Q点坐标,既可将BQ距离用含x'的代数式进行表示了。
最后通过不等式的变形可以求解BQ²≥5/2,即BQ≥√(5/2)。也就是BQ的最小值。(化简部分略)
建议以坐标系来进行解题,假设A点为原点(0,0)P点为(x',2)则此时DP=x'(0≤x'≤3)
B,C,D三点坐标也均可以表示出来,然后可以得到圆的轨迹:
(X-x'/2)²+(Y-2)²=x'²/4
通过P点坐标和A点坐标,也可以得到AP的直线方程:Y=(2/x')X
联立两个式子解方程,可以得到两个解:X=x'和X=8x'/(2x'²+8)
可以发现第一个坐标刚好是P点,而第二个坐标则为Q点,然后根据B点坐标和Q点坐标,既可将BQ距离用含x'的代数式进行表示了。
最后通过不等式的变形可以求解BQ²≥5/2,即BQ≥√(5/2)。也就是BQ的最小值。(化简部分略)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询