某个大于1的自然数分别除442,297,,210得到一个相同的余数,那么这个数是几?
展开全部
某个大于1的自然数分别除442,297,210得到相同的余数,则该自然数是29.考点:同余定理.分析:可设442=x+a
a是余数,297=y+a,210=z+a,x,y,z能被这个自然数整除,相减之后即442-297=x-y能被这个自然数整除,所以得到这个结论:这个数能同时能整除它们的差整除,然后求出公约数即可解答.解答:解:442-297=145,
442-210=232,
297-210=87,
这个数能同时被145,232,87整除,
145,232,87大于1的公约数为29.
故答案为:29.
a是余数,297=y+a,210=z+a,x,y,z能被这个自然数整除,相减之后即442-297=x-y能被这个自然数整除,所以得到这个结论:这个数能同时能整除它们的差整除,然后求出公约数即可解答.解答:解:442-297=145,
442-210=232,
297-210=87,
这个数能同时被145,232,87整除,
145,232,87大于1的公约数为29.
故答案为:29.
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询