已知函数f(x)=½x²+aln(1-x),a为常数。求函数单调性
2个回答
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
(Ⅰ)根据题意知:f′(x)=
2x2+2x+a
x+1
≥0在[1,+∞)上恒成立.
即a≥-x2-2x在区间[1,+∞)上恒成立.
∵-2x2-2x在区间[1,+∞)上的最大值为-4,
∴a≥-4;
经检验:当a=-4时,f ′(x)=
2x2+2x−4
x+1
=
2(x+2)(x−1)
(x+1)
≥0,x∈[1,+∞).
∴a的取值范围是[-4,+∞).
(Ⅱ)f ′(x)=
2x2+2x+a
x+1
=0在区间(-1,+∞)上有两个不相等的实数根,
即方程2x2+2x+a=0在区间(-1,+∞)上有两个不相等的实数根.
记g(x)=2x2+2x+a,则有
−
1
2
>−1
f(−
1
2
)<0
f(−1)>0
,解得0<a<
1
2
.
∴x1+x2=−1,2x22+2x2+a=0,x2=−
1
2
+
1−2a
2
,−
1
2
<x2<0.
∴
f(x2)
x1
=
x22−(2x22+2x2)ln(x2+1)
−1−x2
令k(x)=
x2−(2x2+2x)ln(x+1)
−1−x
,x∈(−
1
2
,0).
k′(x)=
x2
(1+x)2
+2ln(x+1),
p(x)=
x2
(1+x)2
+2ln(x+1).
∴p′(x)=
2x2+6x+2
(1+x)3
,
p′(−
1
2
)=−4,p′(0)=2.
在x0∈(−
1
2
,0)使得p′(x0)=0.
当 x∈(−
1
2
,x0),p′(x)<0;当x∈(x0,0)时,p′(x)>0.
而k′(x)在(−
1
2
,x0)单调递减,在(x0,0)单调递增,
∵k′(−
1
2
)=1−2ln2<0.k′(0)=0,
∴当x∈(−
1
2
,0),k′(x)<0,
∴k(x)在(−
1
2
,0)单调递减,
即0<
f(x2)
x1
<−
1
2
+ln2
2x2+2x+a
x+1
≥0在[1,+∞)上恒成立.
即a≥-x2-2x在区间[1,+∞)上恒成立.
∵-2x2-2x在区间[1,+∞)上的最大值为-4,
∴a≥-4;
经检验:当a=-4时,f ′(x)=
2x2+2x−4
x+1
=
2(x+2)(x−1)
(x+1)
≥0,x∈[1,+∞).
∴a的取值范围是[-4,+∞).
(Ⅱ)f ′(x)=
2x2+2x+a
x+1
=0在区间(-1,+∞)上有两个不相等的实数根,
即方程2x2+2x+a=0在区间(-1,+∞)上有两个不相等的实数根.
记g(x)=2x2+2x+a,则有
−
1
2
>−1
f(−
1
2
)<0
f(−1)>0
,解得0<a<
1
2
.
∴x1+x2=−1,2x22+2x2+a=0,x2=−
1
2
+
1−2a
2
,−
1
2
<x2<0.
∴
f(x2)
x1
=
x22−(2x22+2x2)ln(x2+1)
−1−x2
令k(x)=
x2−(2x2+2x)ln(x+1)
−1−x
,x∈(−
1
2
,0).
k′(x)=
x2
(1+x)2
+2ln(x+1),
p(x)=
x2
(1+x)2
+2ln(x+1).
∴p′(x)=
2x2+6x+2
(1+x)3
,
p′(−
1
2
)=−4,p′(0)=2.
在x0∈(−
1
2
,0)使得p′(x0)=0.
当 x∈(−
1
2
,x0),p′(x)<0;当x∈(x0,0)时,p′(x)>0.
而k′(x)在(−
1
2
,x0)单调递减,在(x0,0)单调递增,
∵k′(−
1
2
)=1−2ln2<0.k′(0)=0,
∴当x∈(−
1
2
,0),k′(x)<0,
∴k(x)在(−
1
2
,0)单调递减,
即0<
f(x2)
x1
<−
1
2
+ln2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |