如图,在平行四边形ABCD中,E为BC边上的一点,且AE与DE分别平分∠BAD和∠ADC
1个回答
展开全部
(1),因为
AE与DE分别平分∠BAD和∠ADC,
所以∠DAE=1/2
∠BAD,
∠ADE=1/2
∠ADC,
又因为
AB//CD,(平行四边形的两条对边互相平行)
所以
∠BAD+∠ADC=180度。(两直线平行,同旁内角互补)
所以
∠DAE+∠ADE=1/2(
∠BAD+∠ADC)=1/2*180度=90度。
所以
在三角形ADE中,∠AED=90度。
所以
AE⊥DE。
(2),连接圆心O,与点E,则:OA=OE,(圆的半径)
所以∠OAE=∠AEO,(三角形OAE是等腰三角形)
又AE平分∠DAB,∠BAE=∠OAE,
所以∠BAE=∠AEO,
(等量代换)
所以AB//OE,
(内错角相等,两直线平行)
又AD//BC,AB//CD,AB=CD,(平行四边形的两条对边互相平行且相等)
所以
OE=CD=5,
(四边形OECD是平行四边形)
所以AD=2OE=10,
(AD是直径)
所以
DE^2=AD^2-AE^2=10^2-8^2=6^2,
(勾股定理)
DE=6,
又直角三角形AFG,直角三角形AED
(∠BAG=∠AED,∠AFG=∠AED=90度)
是相似三角形,
(易证)
所以FG/AF=ED/AE=6/8=3/4。
AE与DE分别平分∠BAD和∠ADC,
所以∠DAE=1/2
∠BAD,
∠ADE=1/2
∠ADC,
又因为
AB//CD,(平行四边形的两条对边互相平行)
所以
∠BAD+∠ADC=180度。(两直线平行,同旁内角互补)
所以
∠DAE+∠ADE=1/2(
∠BAD+∠ADC)=1/2*180度=90度。
所以
在三角形ADE中,∠AED=90度。
所以
AE⊥DE。
(2),连接圆心O,与点E,则:OA=OE,(圆的半径)
所以∠OAE=∠AEO,(三角形OAE是等腰三角形)
又AE平分∠DAB,∠BAE=∠OAE,
所以∠BAE=∠AEO,
(等量代换)
所以AB//OE,
(内错角相等,两直线平行)
又AD//BC,AB//CD,AB=CD,(平行四边形的两条对边互相平行且相等)
所以
OE=CD=5,
(四边形OECD是平行四边形)
所以AD=2OE=10,
(AD是直径)
所以
DE^2=AD^2-AE^2=10^2-8^2=6^2,
(勾股定理)
DE=6,
又直角三角形AFG,直角三角形AED
(∠BAG=∠AED,∠AFG=∠AED=90度)
是相似三角形,
(易证)
所以FG/AF=ED/AE=6/8=3/4。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询