如图一,若AB//CD则∠B+∠D=∠E,你能说明理由吗?
展开全部
过E作EF‖AB,则∵AB‖CD,
∴EF‖CD
∴∠B=∠1,∠D=∠2,(两直线平行,内错角相等。)
∵∠1+∠2=∠E,
∴∠B+∠D=∠E。
∴EF‖CD
∴∠B=∠1,∠D=∠2,(两直线平行,内错角相等。)
∵∠1+∠2=∠E,
∴∠B+∠D=∠E。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
不知道提问者说的是那个图?
所以,我只能说方法咯.....老师讲过....你看着办把....
过E点做AB的平行线EF
∵AB//EF
AB//CD(原因自己写吧...)
∴EF//CD
∴∠D=∠FED
∠B=∠FEB
∴∠B+∠D=∠BED
所以,我只能说方法咯.....老师讲过....你看着办把....
过E点做AB的平行线EF
∵AB//EF
AB//CD(原因自己写吧...)
∴EF//CD
∴∠D=∠FED
∠B=∠FEB
∴∠B+∠D=∠BED
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)如图a,若AB∥CD,则∠B+∠D=∠E,你能说明为什么吗?
(2)反之,若∠B+∠D=∠E,直线AB与CD有什么位置关系?请证明;
(3)若将点E移至图b所示位置,此时∠B、∠D、∠E之间有什么关系?请证明;
(4)若将E点移至图c所示位置,情况又如何?
(5)在图d中,AB∥CD,∠E+∠G与∠B+∠F+∠D又有何关系?
(6)在图e中,若AB∥CD,又得到什么结论?
考点:平行线的判定与性质.
分析:已知AB∥CD,连接AB、CD的折线内折或外折,或改变E点位置、或增加折线的条数,通过适当地改变其中的一个条件,就能得出新的结论,给我们创造性的思考留下了极大的空间,解题的关键是过E点作AB(或CD)的平行线,把复杂的图形化归为基本图形.
解答:解:(1)过E作EF∥AB,
则∠B=∠BEF,
∵AB∥CD,∴EF∥CD,∴∠D=∠DEF,
∴∠BED=∠BEF+∠DEF=∠B+∠D.
(2)若∠B+∠D=∠E,由EF∥AB,∴∠B=∠BEF,
∵∠E=∠BEF+∠DEF=∠B+∠D,
∴∠D=∠DEF,∴EF∥CD,
∴AB∥CD;
(3)若将点E移至图b所示位置,过E作EF∥AB,
∴∠BEF+∠B=180°,∵EF∥CD,∴∠D+∠DEF=180°,
∠E+∠B+∠D=360°;
(4)∵AB∥CD,∴∠B=∠BFD,
∵∠D+∠E=∠BFD,
∴∠D+∠E=∠B;
(5)∵AB∥CD,∴∠E+∠G=∠B+∠F+∠D;
(6)由以上可知:∠E1+∠E2+…+∠En=∠B+∠F1+∠F2+…+∠Fn-1+∠D;
(2)反之,若∠B+∠D=∠E,直线AB与CD有什么位置关系?请证明;
(3)若将点E移至图b所示位置,此时∠B、∠D、∠E之间有什么关系?请证明;
(4)若将E点移至图c所示位置,情况又如何?
(5)在图d中,AB∥CD,∠E+∠G与∠B+∠F+∠D又有何关系?
(6)在图e中,若AB∥CD,又得到什么结论?
考点:平行线的判定与性质.
分析:已知AB∥CD,连接AB、CD的折线内折或外折,或改变E点位置、或增加折线的条数,通过适当地改变其中的一个条件,就能得出新的结论,给我们创造性的思考留下了极大的空间,解题的关键是过E点作AB(或CD)的平行线,把复杂的图形化归为基本图形.
解答:解:(1)过E作EF∥AB,
则∠B=∠BEF,
∵AB∥CD,∴EF∥CD,∴∠D=∠DEF,
∴∠BED=∠BEF+∠DEF=∠B+∠D.
(2)若∠B+∠D=∠E,由EF∥AB,∴∠B=∠BEF,
∵∠E=∠BEF+∠DEF=∠B+∠D,
∴∠D=∠DEF,∴EF∥CD,
∴AB∥CD;
(3)若将点E移至图b所示位置,过E作EF∥AB,
∴∠BEF+∠B=180°,∵EF∥CD,∴∠D+∠DEF=180°,
∠E+∠B+∠D=360°;
(4)∵AB∥CD,∴∠B=∠BFD,
∵∠D+∠E=∠BFD,
∴∠D+∠E=∠B;
(5)∵AB∥CD,∴∠E+∠G=∠B+∠F+∠D;
(6)由以上可知:∠E1+∠E2+…+∠En=∠B+∠F1+∠F2+…+∠Fn-1+∠D;
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询