通过共轭复根的通解如何求微分方程

微分方程通解形式中的共轭复根的例子?见图一... 微分方程通解形式中的共轭复根的例子? 见图一 展开
 我来答
教育小百科达人
2019-02-04 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:459万
展开全部

具体如图:

根据一元二次方程求根公式韦达定理:

 ,当  时,方程无实根,但在复数范围内有2个复根。复根的求法为  (其中  是复数,  )。

由于共轭复数的定义是形如  的形式,称  与  为共轭复数。

另一种表达方法可用向量法表达:  ,  。其中  ,tanΩ=b/a。

由于一元二次方程的两根满足上述形式,故一元二次方程在  时的两根为共轭复根。

根与系数关系:  ,  。

扩展资料:

共轭复根经常出现于一元二次方程中,若用公式法解得根的判别式小于零,则该方程的根为一对共轭复根。

复数的加法法则:设z1=a+bi,z2=c+di是任意两个复数。两者和的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。两个复数的和依然是复数。即 (a+bi)±(c+di)=(a±c)+(b±d)i.

参考资料来源:百度百科——共轭复根

富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
进恬系建明
2019-09-01 · TA获得超过1051个赞
知道小有建树答主
回答量:1313
采纳率:93%
帮助的人:5.6万
展开全部
很多呀,比如
y"+2y'+5y=0
它的特征根为-1+2i,-1-2i.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式