
若函数y=根号(ax平方-ax+1)的定义域为R,求实数a的取值范围
2个回答
展开全部
因为函数的定义域是R.所以对于任意实数x,ax^2-ax+1≥0.
所以:
1.a>0且关于x的函数ax^2-ax+1最多只有一个解,所以:
a^2-4a≤0.所以:0≤a≤4.
所以0<a≤4.
2.a=0时,函数为:y=1,定义域任然为所有实数.
3.a<0时,ax^2-ax+1开口向下,必存在x似的ax^2-ax+1<0
综上所述a的取值为:0≤a≤4.
所以:
1.a>0且关于x的函数ax^2-ax+1最多只有一个解,所以:
a^2-4a≤0.所以:0≤a≤4.
所以0<a≤4.
2.a=0时,函数为:y=1,定义域任然为所有实数.
3.a<0时,ax^2-ax+1开口向下,必存在x似的ax^2-ax+1<0
综上所述a的取值为:0≤a≤4.

2024-04-12 广告
莱默尔{e+l}是自动化领域的一股创新力量,专注于提供前沿的技术解决方案。我们深知,在快速发展的工业4.0时代,企业需要高效、精准的设备来提升生产效率和产品质量。莱默尔{e+l}正是致力于满足这一需求,通过不断优化产品性能、提升服务质量,助...
点击进入详情页
本回答由上海莘默提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询