2个回答
展开全部
x->1
ln(1+(x-1)] ~ (x-1)
lim(x->1) ln(1+(x-1)]/(x-1)
=lim(x->1) -(x-1)/(x-1)
=-1
e^[lim(x->1) ln(1+(x-1)]/(x-1)] = e^(-1)
//
lim(x->2+) [lnx/(x-1)]e^[ 1/(x-2)]
lim(x->2+) [lnx/(x-1)] = ln2
lim(x->2+) e^[ 1/(x-2)] ->+∞
=>lim(x->2+) [lnx/(x-1)]e^[ 1/(x-2)]->+∞
ln(1+(x-1)] ~ (x-1)
lim(x->1) ln(1+(x-1)]/(x-1)
=lim(x->1) -(x-1)/(x-1)
=-1
e^[lim(x->1) ln(1+(x-1)]/(x-1)] = e^(-1)
//
lim(x->2+) [lnx/(x-1)]e^[ 1/(x-2)]
lim(x->2+) [lnx/(x-1)] = ln2
lim(x->2+) e^[ 1/(x-2)] ->+∞
=>lim(x->2+) [lnx/(x-1)]e^[ 1/(x-2)]->+∞
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询