已知直线l与抛物线y^2=2px交于A,B,且OA垂直于OB,求证:直线l恒过定点

 我来答
洋昕金爰爰
2020-03-22 · TA获得超过1188个赞
知道小有建树答主
回答量:1943
采纳率:92%
帮助的人:9.4万
展开全部
由于点A、B在抛物线y^2=2px(p>0)上,
设A (2pm^2,2pm) ,B(2pn^2,2pn),(m≠n,m≠0,n≠0)
由于OA⊥OB
则(2pm^2)(2pn^2)+(2pm)(2pn)
整理得mn=-1
根据A、B两点坐标得直线方程
(2pm-2pn)x+(2pn^2-2pm^2)+4(p^2)(m^2)n-2(p^2)m(n^2)=0
整理得x-(m+n)y-2p=0
显然,此直线经过定点(2p,0)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式