微分方程y'=e的x+y次方的通解
展开全部
∵y'=e^(x+y) ==>y'=e^x*e^y
==>e^(-y)dy=e^xdx
==>e^(-y)=C-e^x (C是积分常数)
==>y=-ln|C-e^x|
∴原微分方程的通解是 y=-ln|C-e^x| (C是积分常数)
==>e^(-y)dy=e^xdx
==>e^(-y)=C-e^x (C是积分常数)
==>y=-ln|C-e^x|
∴原微分方程的通解是 y=-ln|C-e^x| (C是积分常数)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
富港检测东莞有限公司
2024-12-24 广告
2024-12-24 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);富港工业检测技术有限公司是一家专业的第三方检测机构,拥有完善的质量管理体系,先进的检测设备,优秀的技术人才;已取得CNAS、CMA、ISTA等资质认可,包...
点击进入详情页
本回答由富港检测东莞有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询