方差与标准差

 我来答
顺心还婉顺的君子兰5882
2022-07-31 · TA获得超过5539个赞
知道小有建树答主
回答量:273
采纳率:0%
帮助的人:67万
展开全部
标准差定义是总体各单位标准值( xi)与其平均数(μ)离差平方和的算术平均数的 平方根 。它反映组内个体间的离散程度。

所有数减去其平均值的平方和,所得结果除以该组数之个数(或个数减一,即变异数),再把所得值开根号,所得之数就是这组数据的标准差。

标准差与方差一样,表示的也是数据点的离散程度;其在数学上定义为方差的平方根:

一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。

与方差相比,使用标准差来表示数据点的离散程度有3个好处:

表示离散程度的数字与样本数据点的数量级一致,更适合对数据样本形成感性认知。依然以上述10个点的CPU使用率数据为例,其方差约为41,而标准差则为6.4;两者相比较,标准差更适合人理解。

表示离散程度的数字单位与样本数据的单位一致,更方便做后续的分析运算。

在样本数据大致符合正态分布的情况下,标准差具有方便估算的特性:66.7%的数据点落在平均值前后1个标准差的范围内、95%的数据点落在平均值前后2个标准差的范围内,而99%的数据点将会落在平均值前后3个标准差的范围内。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式