已知cos(a+b)=4/5,cos(a-b)=-4/5,a+b∈(3π/2,2π),a-b∈(2/π,π),求sin2a,sin2b
1个回答
展开全部
cos(a-b)=-4/5,a-b∈(π/2,π)
sin(a-b)=3/5
cos(a+b)=4/5
a+b∈(3π/2,2π)
sin(a+b)=-3/5
sin2a
=sin[(a+b)+(a-b)]
=sin(a+b)cos(a-b)+cos(a+b)sin(a-b)
=-3/5*(-4/5)+4/5*3/5
=12/25+12/25
=24/25
sin2b
=[(a+b)-(a-b)]
=sin(a+b)cos(a-b)-cos(a+b)sin(a-b)
=-3/5*(-4/5)-4/5*3/5
=12/25-12/25
=0
sin(a-b)=3/5
cos(a+b)=4/5
a+b∈(3π/2,2π)
sin(a+b)=-3/5
sin2a
=sin[(a+b)+(a-b)]
=sin(a+b)cos(a-b)+cos(a+b)sin(a-b)
=-3/5*(-4/5)+4/5*3/5
=12/25+12/25
=24/25
sin2b
=[(a+b)-(a-b)]
=sin(a+b)cos(a-b)-cos(a+b)sin(a-b)
=-3/5*(-4/5)-4/5*3/5
=12/25-12/25
=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询