求证2的算术平方根为无理数
展开全部
假如根号2是有理数,那么它一定可以用一个最简的(不能再约分的)分数m/n表示
则:m^2/n^2=2
所以m^2=2*n^2
所以m是偶数
假设m=2k,那么2*n^2=4*k^2
所以n^2=2*k^2
所以说n也是偶数
既然m,n都是偶数,那么m/n就不是最简分数,与原设相矛盾
故根号2是无理数
则:m^2/n^2=2
所以m^2=2*n^2
所以m是偶数
假设m=2k,那么2*n^2=4*k^2
所以n^2=2*k^2
所以说n也是偶数
既然m,n都是偶数,那么m/n就不是最简分数,与原设相矛盾
故根号2是无理数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
大雅新科技有限公司
2024-11-19 广告
2024-11-19 广告
这方面更多更全面的信息其实可以找下大雅新。深圳市大雅新科技有限公司从事KVM延长器,DVI延长器,USB延长器,键盘鼠标延长器,双绞线视频传输器,VGA视频双绞线传输器,VGA延长器,VGA视频延长器,DVI KVM 切换器等,优质供应商,...
点击进入详情页
本回答由大雅新科技有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询