如何判断一个级数的发散性?

 我来答
遺莂緈菔
2023-06-27 · TA获得超过2.3万个赞
知道答主
回答量:243
采纳率:100%
帮助的人:11.8万
展开全部

判别一个级数的发散性有如下步骤。

1、看通项un的极限是不是0。

2、如果极限不为0,那么∑un必然发散。

3、如果极限为0,那么∑un就有可能发散也有可能收敛,要具体分析。

4、幂级数Σa_n*x^n(n从0到+∞)在收敛半径之内绝对收敛,在收敛半径之外发散。在收敛区间端点上有可能条件收敛、绝对收敛或者发散。

举例:判定∑(1/(n*n^(1/n)))是不是发散的。

1/(n*n^(1/n))<1/n,可是∑1/n是发散的,所以还是不能断定。

但是注意到n^(1/n)在n很大的时候趋于1,所以1/(n*n^(1/n))>1/(2n)。而∑1/(2n)发散,可以断定∑(1/(n*n^(1/n)))发散。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式