设数列{an}的前N项和为Sn,已知a1=1,S(n+1)=4an+2 1设bn=a下标(n+1)-2an 2求数列ande 通项公式

详细一点哦谢谢了哈!!!!!!!!!!!!!!!!!!... 详细一点哦 谢谢了哈!!!!!!!!!!!!!!!!!! 展开
yx208
2010-11-11 · TA获得超过1.2万个赞
知道大有可为答主
回答量:2365
采纳率:66%
帮助的人:1991万
展开全部
S(n+1)=4an+2;Sn=4a(n-1)+2
a(n+1)=S(n+1)-Sn=4an-4a(n-1)
a(n+1)=4[an-4a(n-1)]
即:a(n+1)-2an=2[an-2a(n-1)]
[a(n+1)-2an]/[an-2a(n-1)]=2
bn/b(n-1)=2

{bn}为等比数列,q=2,
S2=4a1+2=6=a1+a2,a2=5,b1=a2-2a1=3
bn=b1*2^(n-1)=3*2^(n-1)

a(n+1)-2an=3*2^(n-1)
a(n+1)=2an+3*2^(n-1)

an的通项要用归纳法证明!
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式