当a=2/(1-√3)时,求(a∧2-1)/(a-1)-√(a∧2+2a+1)/(a∧2+a-1/a)的值
当a=2/(1-√3)时,求(a∧2-1)/(a-1)-√(a∧2+2a+1)/(a∧2+a)-1/a的值...
当a=2/(1-√3)时,求(a∧2-1)/(a-1) -√(a∧2+2a+1) /(a∧2+a)-1/a的值
展开
1个回答
展开全部
a=2/(1-√3)
=2(1+√3)/(1-√3)(1+√3)
=2(1+√3)/(1-3)
=-(1++√3)
=-1-√3
则a+1=-√3<0
|a+1|=-(a+1)
原式=(a+1)(a-1)/(a-1)-√(a+1)²/[a(a+1)]-1/a
=(a+1)-|a+1|/[a(a+1)]-1/a
=(a+1)-[-(a+1)]/[a(a+1)]-1/a
=(a+1)+(a+1)/[a(a+1)]-1/a
=(a+1)+1/a-1/a
=a+1
=-√3
=2(1+√3)/(1-√3)(1+√3)
=2(1+√3)/(1-3)
=-(1++√3)
=-1-√3
则a+1=-√3<0
|a+1|=-(a+1)
原式=(a+1)(a-1)/(a-1)-√(a+1)²/[a(a+1)]-1/a
=(a+1)-|a+1|/[a(a+1)]-1/a
=(a+1)-[-(a+1)]/[a(a+1)]-1/a
=(a+1)+(a+1)/[a(a+1)]-1/a
=(a+1)+1/a-1/a
=a+1
=-√3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询