已知a>0,b>0,且a+b=1,试用分析法证明不等式(a+1/a)(b+1/b)≥25/4

沉默菋噵1995
2014-05-17 · TA获得超过3743个赞
知道小有建树答主
回答量:800
采纳率:100%
帮助的人:474万
展开全部
由均值不等式
a+b≥2√ab
ab≤1/4

证法一
(a+1/a)(b+1/b)
=(a^2+1)/a*(b^2+1)/b
=(a^2b^2+a^2+1+b^2)/ab
=[a^2b^2+(a+b)^2-2ab+1]/ab
=[a^2b^2+(1-2ab)+1]/ab
=[(ab-1)^2+1]/ab
(ab-1)^2+1≥25/16
0<ab≤1/4
(a+1/a)(b+1/b)≥25/4得证
取等号时a=b=1/2

证法二
(a+1/a)(b+1/b)
=ab+1/ab+a/b+b/a
[均值不等式]
≥ab+1/ab+2
[f(x)=x+1/x在x∈(0,1]上单调递减]
≥1/4+1/(1/4)+2
=25/4
取等号时a=b=1/2
(转)
更多追问追答
追问
是求证大于等于25/4.不是求a,b啊
追答
对的呀,是当a=b=1/2时,取到等号
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式