初3 相似三角形数学题(有图)
在⊙O中,弦AB与CD相交与点M,弧AD=弧BC(1)三角形MAC是等腰三角形(这题我已经做好了看第2题)(2)如果AC为⊙O的直径,求证AC^2=2AM*AB(2AM乘...
在⊙O中,弦AB与CD相交与点M,弧AD=弧BC
(1)三角形MAC是等腰三角形(这题我已经做好了 看第2题)
(2)如果AC为⊙O的直径,求证 AC^2=2AM * AB(2AM乘AB) 展开
(1)三角形MAC是等腰三角形(这题我已经做好了 看第2题)
(2)如果AC为⊙O的直径,求证 AC^2=2AM * AB(2AM乘AB) 展开
4个回答
展开全部
证明:2.连接OM,BC
∵△AMC是等腰三角形,AO是中线
∴∠AOM=∠COM=90°
∵直径所对的圆周角是直角
∴∠ABC=90°
则∠AOM=∠ABC=90°
∵在△AOM和△ABC中
∠AOM=∠ABC=90°
∠MAO=∠BAC
∴△AOM∽△ABC
∴AM/AC=AO/AB
∴AC*AO=AM*AB
又∵AO=(1/2)AC
∴AC*(1/2)AC=AM*AB
(1/2)AC^2=AM*AB
AC^2=2AM*AB
∵△AMC是等腰三角形,AO是中线
∴∠AOM=∠COM=90°
∵直径所对的圆周角是直角
∴∠ABC=90°
则∠AOM=∠ABC=90°
∵在△AOM和△ABC中
∠AOM=∠ABC=90°
∠MAO=∠BAC
∴△AOM∽△ABC
∴AM/AC=AO/AB
∴AC*AO=AM*AB
又∵AO=(1/2)AC
∴AC*(1/2)AC=AM*AB
(1/2)AC^2=AM*AB
AC^2=2AM*AB
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
第二问哈
连接OM和BC
由于三角形ACM为等腰三角形
且OM为AC的中线根据三线合一
所以OM垂直于AC即角MOA=90度
又角ABC为直线对应的圆周角故也等于90度等于角MOA
又因为角A等于角A
所以三角形OMA与三角形ABC相似(两内角对应相等)
所以有OA/AB=AM/AC
OA=1/2AC
所以1/2AC^2=AM*AB
AC^2=2AM*AB
就是相似三角形对应变成比例问题
连接OM和BC
由于三角形ACM为等腰三角形
且OM为AC的中线根据三线合一
所以OM垂直于AC即角MOA=90度
又角ABC为直线对应的圆周角故也等于90度等于角MOA
又因为角A等于角A
所以三角形OMA与三角形ABC相似(两内角对应相等)
所以有OA/AB=AM/AC
OA=1/2AC
所以1/2AC^2=AM*AB
AC^2=2AM*AB
就是相似三角形对应变成比例问题
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
连接OM,BC,则RT三角形OMA相似于RT三角形CBA,(直角三角形怎么证不用我说了吧),因为相似,所以AB/AC=AO/AM,因为AO=1/2AC,所以AB/AC=AC/2AM,所以AC^2=2AM*AB.(你用笔写下来可能看得清楚一点)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询