如图1,在平面直角坐标系中,边长为1的正方形OABC的顶点B在y轴的正半轴上,O为坐标原点.现将正
方形OABC绕O点按顺时针方向旋转.(1)当点A第一次落到y轴正半轴上时,求边BC在旋转过程中所扫过的面积;(2)若线段AB与y轴的交点为M(如图2),线段BC与直线y=...
方形OABC绕O点按顺时针方向旋转.(1)当点A第一次落到y轴正半轴上时,求边BC在旋转过程中所扫过的面积;(2)若线段AB与y轴的交点为M(如图2),线段BC与直线y=x的交点为N.设△MNB的周长为l,在正方形OABC旋转的过程中l值是否有改变?并说明你的结论;(3)设旋转角为θ,当θ为何值时,△OMN的面积最小?求出这个最小值,并求出此时△BMN的内切圆半径.
展开
1个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询