初三数学竞赛题。要求有详细过程,用初中方法解答。谢谢
1、在三角形ABC中,∠ABC=12°,∠ACB=132°,BM和CN分别是这两个角的外角平分线,且点M、N分别在直线AC和直线AB上,则BM和CN的大小关系为?2、若两...
1、在三角形ABC 中,∠ABC=12°,∠ACB=132°,BM和CN 分别是这两个角的外角平分线,且点M、N分别在直线AC和直线AB上,则BM和CN的大小关系为?
2、若两个正整数的最小公倍数为2010,且这两个数的最大公约数是最小的质数,则这两个数和的最大值是?差的最小值是? 展开
2、若两个正整数的最小公倍数为2010,且这两个数的最大公约数是最小的质数,则这两个数和的最大值是?差的最小值是? 展开
2个回答
展开全部
(1)
由题知道
∠CBM=1/2(180°-∠ABC)=1/2(180°-12)=84°
∠BCM=180-∠ACB=48°
由三角形内角和 ∠BMC=180-84-48=48°
所以BM=BC
∠ACN=1/2(180-∠ACB)=1/2(180-132)=24
∠BAC=∠ACN+∠ANC
36=24+∠ANC
∠ANC=12 由于 ∠ABC=12
所以 CB=CN
得 BM=CN
(2)2010=2×3×5×67
设这两个数为P Q
且这两个数的最大公约数是最小的质数
既为2 所以P Q都能被2整除
P Q 由上面的四个数中的几个相乘
显然当P=2 Q=2×3×5×67=2010 P+Q 最大为2012
当P=2×67=134 Q=2×3×5=30 P-Q 最小为104
由题知道
∠CBM=1/2(180°-∠ABC)=1/2(180°-12)=84°
∠BCM=180-∠ACB=48°
由三角形内角和 ∠BMC=180-84-48=48°
所以BM=BC
∠ACN=1/2(180-∠ACB)=1/2(180-132)=24
∠BAC=∠ACN+∠ANC
36=24+∠ANC
∠ANC=12 由于 ∠ABC=12
所以 CB=CN
得 BM=CN
(2)2010=2×3×5×67
设这两个数为P Q
且这两个数的最大公约数是最小的质数
既为2 所以P Q都能被2整除
P Q 由上面的四个数中的几个相乘
显然当P=2 Q=2×3×5×67=2010 P+Q 最大为2012
当P=2×67=134 Q=2×3×5=30 P-Q 最小为104
展开全部
由题知道
∠CBM=1/2(180°-∠ABC)=1/2(180°-12)=84°
∠BCM=180-∠ACB=48°
由三角形内角和 ∠BMC=180-84-48=48°
所以BM=BC
∠ACN=1/2(180-∠ACB)=1/2(180-132)=24
∠BAC=∠ACN+∠ANC
36=24+∠ANC
∠ANC=12 由于 ∠ABC=12
所以 CB=CN
得 BM=CN
第二题 令2数为a,b .
则 gcd(a,b)=2 -> a=2m b =2n. m n 互质。
a|2010. b |2010 -> m,n 为2010 约数~
又 2010= 2x5x3x67
则 a=2 b =2010 和最大为2012
a= 2x67=134 b =30 |差|最小为104
∠CBM=1/2(180°-∠ABC)=1/2(180°-12)=84°
∠BCM=180-∠ACB=48°
由三角形内角和 ∠BMC=180-84-48=48°
所以BM=BC
∠ACN=1/2(180-∠ACB)=1/2(180-132)=24
∠BAC=∠ACN+∠ANC
36=24+∠ANC
∠ANC=12 由于 ∠ABC=12
所以 CB=CN
得 BM=CN
第二题 令2数为a,b .
则 gcd(a,b)=2 -> a=2m b =2n. m n 互质。
a|2010. b |2010 -> m,n 为2010 约数~
又 2010= 2x5x3x67
则 a=2 b =2010 和最大为2012
a= 2x67=134 b =30 |差|最小为104
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询