求16题解
1个回答
展开全部
16、解:
(1)
当x=π/3时,a=(√3/2,1/2),b=(√3/2,√3/2);设a与c的夹角为α,则
a•c=-√3/2+0=-√3/2=|a||c|cosα=1×1×cosα
∴cosα=-√3/2,∴α=5π/6
(2)
若x∈[-π/8,π/4],f(x)=λa•b的最大值为1/2,即
λ(sin²x+sinxcosx)=λ(1-cos2x+sin2x)/2的最大值为1/2
∵1-cos2x+sin2x在[-π/8,π/4]内单调上升,当x=π/4时,取得最大值2,
∴λ=1/2。
如果你觉得我的回答比较满意,希望你给予采纳,因为解答被采纳是我们孜孜不倦为之付出的动力!
(1)
当x=π/3时,a=(√3/2,1/2),b=(√3/2,√3/2);设a与c的夹角为α,则
a•c=-√3/2+0=-√3/2=|a||c|cosα=1×1×cosα
∴cosα=-√3/2,∴α=5π/6
(2)
若x∈[-π/8,π/4],f(x)=λa•b的最大值为1/2,即
λ(sin²x+sinxcosx)=λ(1-cos2x+sin2x)/2的最大值为1/2
∵1-cos2x+sin2x在[-π/8,π/4]内单调上升,当x=π/4时,取得最大值2,
∴λ=1/2。
如果你觉得我的回答比较满意,希望你给予采纳,因为解答被采纳是我们孜孜不倦为之付出的动力!
追问
你知道如何求平均数的估计值?
追答
平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中心的横坐标之和。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询