已知,如图,在四边形ABCD中,∠BAD=90°,对角线AC与BD相交于点O,BO=DO,点E、F分别是AD、AC的中点

求证:∠ADC+∠ADO=∠EFC如果点G是BC的中点,EG与AC相交于点H,求证:EH=GH第一小题做出来了,关键是第二小题,尽快谢谢... 求证:∠ADC+∠ADO=∠EFC
如果点G是BC的中点,EG与AC相交于点H,求证:EH=GH
第一小题做出来了,关键是第二小题,尽快谢谢
展开
mbcsjs
2014-07-10 · TA获得超过23.4万个赞
知道顶级答主
回答量:7.6万
采纳率:77%
帮助的人:3.1亿
展开全部
1、∵E、F分别是AD、AC中点
∴EF是△ACD中位线
∴EF∥CD
那么∠AEF=∠ADC
∵∠BAD=90°,OB=OD
那么OA是直角三角形ABD斜边的中线
∴OA=OD=OB
∴∠ADO=∠DAO=∠EAF
∴∠EFC=∠EAF+∠AEF=∠ADO+∠ADC
即∠ADC+∠ADO=∠EFC
2、连接OG、OE、EG
∵E、F分别是AD、AC中点
∴EF是△ACD中位线
∴EF∥CD,EF=1/2CD
∵G、O分别是BC、BD中点(OB=OD)
∴OG是△BCD中位线
∴OG=1/2CD,OG∥CD
∴OG=EF,OG∥EF
∴GOEF是平行四边形
∴EH=GH(FH=OH) 平行四边形对角线互相平分
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式