已知数列{an}是首项为a1=1/4,公比q=1/4的等比数列,设bn+2=3(log1/4)an

已知数列{an}是首项为a1=1/4,公比q=1/4的等比数列,设bn+2=3(log1/4)an(n∈N*),数列{Cn}满足Cn=an*bn(1)求证bn是等差数列(... 已知数列{an}是首项为a1=1/4,公比q=1/4的等比数列,设bn+2=3(log1/4)an(n∈N*),数列{Cn}满足Cn=an*bn
(1)求证bn是等差数列
(2)求数列cn的前n项和sn
展开
wstncc
高粉答主

2014-01-21 · 说的都是干货,快来关注
知道大有可为答主
回答量:4.1万
采纳率:94%
帮助的人:1亿
展开全部
解:(1)由题意,可得 an=(1/4)^n;
那么: bn+2=3*log(1/4)an=3n;
所以: bn=3n-2,为等差数列;
(2)由条件Cn= an*bn得到:
Cn= (1/4)^n*(3n-2)=3n*(1/4)^n-2*(1/4)^n
记Cn的前n项和为Sn;
那么: Sn=3[1/4+2*(1/4)^2+……+n*(1/4)^n]-2*(1/4+(1/4)^2+……+(1/4)^n);
记Pn=1/4+2*(1/4)^2+……+n*(1/4)^n; --------(1)
则有: 1/4*Pn=(1/4)^2+2*(1/4)^3+……+n*(1/4)^(n+1); ------(2)
(1)-(2)得到:
3/4 Pn=1/4+(1/4)^2+(1/4)^3+……+(1/4)^n-n*(1/4)^(n+1) = 1/3*(1-(1/4)^n)- n*(1/4)^(n+1)
所以Sn可变形为:
Sn=3[1/3*(1-(1/4)^n)- n*(1/4)^(n+1)]-2*[1/3*(1-(1/4)^n)]
=1/3*[1-(1/4)^n]-3n*(1/4)^(n+1);
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式