设数列{an}的前n项和为Sn=n^2,{bn}为等比数列,且a1=b1,b2(a2-a1)=b
设数列{an}的前n项和为Sn=n^2,{bn}为等比数列,且a1=b1,b2(a2-a1)=b1。(Ⅰ)求数列{an}和{bn}的通项公式;(Ⅱ)设cn=an/2bn,...
设数列{an}的前n项和为Sn=n^2,{bn}为等比数列,且a1=b1,b2(a2-a1)=b1。
(Ⅰ)求数列 {an}和{bn} 的通项公式;
(Ⅱ)设 cn=an/2bn,求数列 {cn}的前n项和Tn. 展开
(Ⅰ)求数列 {an}和{bn} 的通项公式;
(Ⅱ)设 cn=an/2bn,求数列 {cn}的前n项和Tn. 展开
展开全部
您好:(1)当n=1时,a1=S1=2;当n≥2时,an=Sn-Sn-1=2n2-2(n-1)2=4n-2,贺销
故{an}的通项公式为an=4n-2,灶拍戚即{an}是a1=2,公差d=4的等差数列.
设{bn}的通项公式为q,则b1qd=b1,d=4,
所以q==b2/b1=1/4,bn=2*(1/4)^(n-1)
(2)cn=(4n-2)/[2*(1/4)^(n-1)]=(2n-1)*4^(n-1)
所以Tn=1*4^0+3*4^1+5*4^2+…隐陵…+(2n-1)*4^(n-1)
4Tn=1*4^1+3*4^2+5*4^3+……+(2n-3)*4^(n-1)+(2n-1)*4^n
两式相减得:
3Tn=(2n-1)*4^n-2*[1*4^1+1*4^2+……+1*4^(n-1)]-1*4^0
1*4^1+1*4^2+……+1*4^(n-1)
=1*4^1*[1-4^(n-1)]/(1-4)
=4[4^(n-1)-1]/3
=(4^n-4)/3
所以Tn=[(2n-1)*4^n-2(4^n-4)/3-1]/3
=[3(2n-1)-2]*4^n/9+(8/3-1)/3
=[(6n-5)*4^n+5]/9
希望对您的学习有帮助
满意请采纳O(∩_∩)O谢谢
欢迎追问O(∩_∩)O谢谢
故{an}的通项公式为an=4n-2,灶拍戚即{an}是a1=2,公差d=4的等差数列.
设{bn}的通项公式为q,则b1qd=b1,d=4,
所以q==b2/b1=1/4,bn=2*(1/4)^(n-1)
(2)cn=(4n-2)/[2*(1/4)^(n-1)]=(2n-1)*4^(n-1)
所以Tn=1*4^0+3*4^1+5*4^2+…隐陵…+(2n-1)*4^(n-1)
4Tn=1*4^1+3*4^2+5*4^3+……+(2n-3)*4^(n-1)+(2n-1)*4^n
两式相减得:
3Tn=(2n-1)*4^n-2*[1*4^1+1*4^2+……+1*4^(n-1)]-1*4^0
1*4^1+1*4^2+……+1*4^(n-1)
=1*4^1*[1-4^(n-1)]/(1-4)
=4[4^(n-1)-1]/3
=(4^n-4)/3
所以Tn=[(2n-1)*4^n-2(4^n-4)/3-1]/3
=[3(2n-1)-2]*4^n/9+(8/3-1)/3
=[(6n-5)*4^n+5]/9
希望对您的学习有帮助
满意请采纳O(∩_∩)O谢谢
欢迎追问O(∩_∩)O谢谢
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询