设数列{a n }的前n项和为S n ,且满足S n =2-a n ,n=1,2,3,….(1)求数列{a n }的通项公式;(2)
设数列{an}的前n项和为Sn,且满足Sn=2-an,n=1,2,3,….(1)求数列{an}的通项公式;(2)若数列{bn}满足b1=1,且bn+1=bn+an,求数列...
设数列{a n }的前n项和为S n ,且满足S n =2-a n ,n=1,2,3,….(1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1 =1,且b n+1 =b n +a n ,求数列{b n }的通项公式;(3)设c n =n (3-b n ),求数列{c n }的前n项和为T n .
展开
改密死吧119
推荐于2016-05-25
·
超过82用户采纳过TA的回答
知道答主
回答量:152
采纳率:75%
帮助的人:74.5万
关注
(1)因为n=1时,a 1 +S 1 =a 1 +a 1 =2,所以a 1 =1. 因为S n =2-a n ,即a n +S n =2,所以a n+1 +S n+1 =2. 两式相减:a n+1 -a n +S n+1 -S n =0,即a n+1 -a n +a n+1 =0,故有2a n+1 =a n . 因为a n ≠0,所以 = ( n∈N * ). 所以数列{a n }是首项a 1 =1,公比为 的等比数列,a n = ( ) n-1 ( n∈N * ). (2)因为b n+1 =b n +a n ( n=1,2,3,…),所以b n+1 -b n = ( ) n-1 .从而有b 2 -b 1 =1,b 3 -b 2 = ,b 4 -b 3 = ( ) 2 ,…,b n -b n-1 = ( ) n-2 ( n=2,3,…). 将这n-1个等式相加,得b n -b 1 =1+ + ( ) 2 +…+ ( ) n-2 = =2- 2( ) n-1 . 又因为b 1 =1,所以b n =3- 2( ) n-1 ( n=1,2,3,…). (3)因为c n =n (3-b n )= 2n( ) n-1 , 所以T n = 2[ ( ) 0 +2( )+3 ( ) 2 +…+(n-1) ( ) n-2 +n ( ) n-1 ] . ① T n = 2[ ( ) 1 +2 ( ) 2 +3 ( ) 3 +…+(n-1) ( ) n-1 +n ( ) n ] . ② ①-②,得 T n = 2[ ( ) 0 +( )+ ( ) 2 +…+ ( ) n-1 ] - 2n( ) n . 故T n = 4 - 4n( ) n =8- - 4n( ) n =8- (8+4n) ( n=1,2,3,…). |
收起
为你推荐: