将一把三角尺放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,

将一把三角尺放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于点Q.设A、P两点间的距离为x.(1)当点... 将一把三角尺放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于点Q.设A、P两点间的距离为x.(1)当点Q在边CD上时,请你测量线段PQ与线段PB的长度(至少两次),将你测量的实际结果填入下表,由此猜想线段PQ与线段PB之间有怎样的大小关系并证明你得到的结论; 线段PQ的长度 线段PB的长度 第一次 第二次 (2)当点Q在边CD上时,设线段CQ的长度为y,求y与x之闾的函数解析式,并写出x的取值范围;(3)当点Q在边DC的延长线上时,设线段CQ的长度为y,求y与x之间的函数解析式,并写出x的取值范围;(4)当点P在线段AC上滑动时,△PCQ的面积s能否等于328和116?如果可能,求出相应的x值;如果不可能,试说明理由.(图①,②,③的形状大小相同,图①供操作、实验用,图②,③备用). 展开
 我来答
艾薇儿QQqkK68
2014-12-03 · TA获得超过217个赞
知道答主
回答量:128
采纳率:0%
帮助的人:184万
展开全部
解答:解:(1)(说明:表略,两线段长度基本相等即可)经测量,得PB=PQ
证明:如图,过点P作PF⊥BC于点F,PE⊥CD于点E,
∵∠PCE=45°,∠PEQ=90°,
∴PE=EC.
∴四边形PFCE是正方形.
∴PE=PF.
∵∠BPF=∠QPE=90°-∠FPQ,∠BFP=∠PEQ=90°,
∴△BPF≌△QPE.
∴BP=PQ;

(2)∵AP=x,CQ=y,
∵AB=BC=1,
∴AC=
2

∵PFCE是正方形,
∴PC=
2
-x,
∴CE=1-
2
2
x,
∴BF=1-FC=1-(1-
2
2
x),
=
2
2
x,
∴EQ=
2
2
x,
∴y=CQ=(1-
2
2
x)-
2
2
x=1-
2
x,
∴y=1-
2
x(0≤x≤
2
2
);

(3)由(2)易证:当点Q在边DC的延长线上时,
∵PC=
2
-x,利用勾股定理得出:
∴EC=1-
2
2
x,
EQ=BF=MP=
2
2
x,
CQ=EQ-EC=
2
x-1
Y=
2
x-1(
2
2
≤x≤
2
);

(4)当点P在线段AC上滑动时,△PCQ的最大面积为
1
2

∴△PCQ的面积不可能是
3
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消