对于三次函数f(x)=ax3+bx2+cx+d(a≠0)有如下定义:定义(1):设f″(x)是函数y=f(x)的导数f′(x

对于三次函数f(x)=ax3+bx2+cx+d(a≠0)有如下定义:定义(1):设f″(x)是函数y=f(x)的导数f′(x)的导数,若方程f″(x)=0有实数解x0,则... 对于三次函数f(x)=ax3+bx2+cx+d(a≠0)有如下定义:定义(1):设f″(x)是函数y=f(x)的导数f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”;定义(2):设x0为常数,若定义在R上的函数y=f(x)对于定义域内的一切实数x,都有f(x0+x)+f(x0-x)=2f(x0)成立,则函数y=f(x)的图象关于点(x0,f(x0))对称.己知f(x)=x3-3x2+ax+2在x=-1处取得极大值.请回答下列问题:(1)当x∈[0,4]时,求f(x)的最小值和最大值;(2)求函数f(x)的“拐点”A的坐标,并检验函数f(x)的图象是否关于“拐点”A对称. 展开
 我来答
檀兰芝3z
2014-11-27 · TA获得超过125个赞
知道答主
回答量:175
采纳率:100%
帮助的人:69.2万
展开全部
(1)f′(x)=3x2-6x+a
∵f(x)=x3-3x2+ax+2在x=-1处取得极大值
∴f′(-1)=0
∴a=-9    …(2分)
∴f(x)=x3-3x2-9x+2
∴f′(x)=3(x+1)(x-3)=0知x=-1或x=3…(3分)
当x变化时,f(x)变化如下:
x (-∞,-1) -1 (-1,3) 3 (3,+∞)
f(x) + 0 - 0 +
f(x) 7 -25
又f(0)=2,f(4)=-18
∴f(x)min=-25,f(x)max=2      …(6分)
(2)由(1)知f′(x)=3x2-6x-9,∴f″(x)=6x-6    …(8分)
由f″(x)=0,即6x-6=0,∴x=1,
又f(1)=-9,
∴f(x)=x3-3x2-9x+2的“拐点”A的坐标是(1,-9)…(10分)
∵f(1+x)+f(1-x)=-18,2f(1)=-18
∴由定义(2)知:f(x)=x3-3x2-9x+2的图象关于点A(1,-9)对称…(12分)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式