如图,在平行四边形ABCD中,AB=4a,E是BC的中点,BE=2a,∠BAD=120°,P是BD上的动点,则PE+PC的最小值为

如图,在平行四边形ABCD中,AB=4a,E是BC的中点,BE=2a,∠BAD=120°,P是BD上的动点,则PE+PC的最小值为23a23a.... 如图,在平行四边形ABCD中,AB=4a,E是BC的中点,BE=2a,∠BAD=120°,P是BD上的动点,则PE+PC的最小值为23a23a. 展开
 我来答
惜煜箙
推荐于2016-05-01 · TA获得超过138个赞
知道答主
回答量:96
采纳率:100%
帮助的人:132万
展开全部
解答:解:∵E是BC的中点,BE=2a,
∴BC=2BE=2×2a=4a,
故BC=AB,
∴平行四边形ABCD为菱形.
∴∠ABD=∠CBD,
∴BD是∠ABC的平分线.
作E关BD的对称点E′,
连接CE′,PE,
则PE=PE′,
此时,PE+PC=PE′+PC=CE′,
CE′即为PE+PC的最小值.
∵∠A=120°,
∴∠ABD=∠ADB=
180°?120°
2
=30°,
∴∠ABC=60°,
又∵BE′=BE,
∴△E′BE为正三角形,EE′=2a,∠ABE=60°,
故EE′=EC,
∠EE′C=∠ECE′=30°,
∴∠BE′C=60°+30°=90°,
在Rt△BCE′中,
CE′=
(4a)2?(2a)2
=2
3
a.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式