斜边上的中线等于斜边的一半的时候能证明这个三角形是直角三角形吗
【如果三角形的一边中线等于该边长的一半,那么三角形为直角三角形。】
设在△ABC中,AD为BC边的中线,且AD=1/2BC,求证:△ABC为直角三角形。
【证法1】
∵AD是BC边的中线,
∴BD=CD=1/2BC,
∵AD=1/2BC,
∴BD=AD=CD,
∴∠1=∠B,∠2=∠C,
∴∠1+∠2=∠B+∠C,
即∠BAC=∠B+∠C,
∵2∠BAC=∠BAC+∠B+∠C=180°(三角形内角和180°),
∴∠BAC=90°,
∴△ABC是直角三角形。
【证法2】
取AC的中点E,连接DE。
∵AD是BC边的中线,
∴BD=CD=1/2BC,
∵AD=1/2BC,
∴AD=CD,
∵点E是AC的中点,
∴DE⊥AC(三线合一),
∴∠DEC=90°,
∵点D是BC的中点,点E是AC的中点,
∴DE是△ABC的中位线,
∴DE//AB,
∴∠BAC=∠DEC=90°,
∴△ABC是直角三角形。
【证法3】
延长AD到E,使DE=AD,连接BE、CE。
∵AD是BC边的中线,
∴BD=CD,
又∵AD=DE,
∴四边形ABEC是平行四边形(对角线相等的四边形是平行四边形),
∵AD=1/2BC,AD=DE=1/2AE,
∴BC=AE,
∴四边形ABEC是矩形(对角线相等的平行四边形是矩形),
∴∠BAC=90°(矩形的内角均为直角),
∴△ABC是直角三角形。