如图,⊙O是△ABC的外接圆,BC是⊙O的直径,D是劣弧AC的中点,BD交AC于点E.
如图,⊙O是△ABC的外接圆,BC是⊙O的直径,D是劣弧AC的中点,BD交AC于点E.(1)求证:AD2=DE•DB;(2)若BC=2/5,CD=根号5/2,...
如图,⊙O是△ABC的外接圆,BC是⊙O的直径,D是劣弧AC的中点,BD交AC于点E.
(1)求证:AD2=DE•DB;
(2)若BC=2/5,CD=根号5/2,求DE的长 展开
(1)求证:AD2=DE•DB;
(2)若BC=2/5,CD=根号5/2,求DE的长 展开
2个回答
展开全部
首先更正一下你第二问的错误!!!应该为BC=5/2
证明:在圆O中
∵D是劣弧AC的中点
∴∠CBD=∠DBA
∵∠CBD=∠CAD (同弧所对的圆周角)
∴∠DBA=∠CAD
∵∠BDA=∠EDA
∴△ABD∽△EAD
∴AD/ED=DB/DA
∴AD²=ED*DB
(2) ∵AB为直径
∴在Rt△BCD中
∴BD=√(BC²-CD²)=√[(5/2)²-(√5/2)²]=√5
∵AD=DC (D是劣弧AC的中点)
∵AD²=ED*DB
∴(√5/2)²=ED*√5
∴ED=√5/4
证明:在圆O中
∵D是劣弧AC的中点
∴∠CBD=∠DBA
∵∠CBD=∠CAD (同弧所对的圆周角)
∴∠DBA=∠CAD
∵∠BDA=∠EDA
∴△ABD∽△EAD
∴AD/ED=DB/DA
∴AD²=ED*DB
(2) ∵AB为直径
∴在Rt△BCD中
∴BD=√(BC²-CD²)=√[(5/2)²-(√5/2)²]=√5
∵AD=DC (D是劣弧AC的中点)
∵AD²=ED*DB
∴(√5/2)²=ED*√5
∴ED=√5/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询