2个回答
展开全部
证明思路:证明其有下界,是一个存在性问题,只要能找到一个即可;证明它无上界应使用反证法。
符号说明:数列{n}中的第n项表示为a(n)=n。
证明:
1)证明数列{n}有下界。
取 Bd=0, 则 这个数列中的任意项a(n)=n>= Bd, 从而 数列{n}有下界;
2)证明数列{n}无上界。
假设数列{n}存在上界,设Bu=M>0为它的一个上界,则根据上界的定义,有对任意n,a(n)<=M。取L=[M]为不超过M的最大整数,其中[ ]为取整函数,则L+1是正整数(从而是数列{n}中的项),我们有a(L+1)=L+1>M,这与任意a(n)<=M矛盾。证毕。
符号说明:数列{n}中的第n项表示为a(n)=n。
证明:
1)证明数列{n}有下界。
取 Bd=0, 则 这个数列中的任意项a(n)=n>= Bd, 从而 数列{n}有下界;
2)证明数列{n}无上界。
假设数列{n}存在上界,设Bu=M>0为它的一个上界,则根据上界的定义,有对任意n,a(n)<=M。取L=[M]为不超过M的最大整数,其中[ ]为取整函数,则L+1是正整数(从而是数列{n}中的项),我们有a(L+1)=L+1>M,这与任意a(n)<=M矛盾。证毕。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
什么数列?不是所有的数列都有下届无上界的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询