数列{an}满足a1=33,a(n+1)-an=2n,则an/n的最小值为_

an=n+33/n-1≥2√33-1所以:n=33/n所以:n=√33n=5或者n=6a5/5=5+33/5-1=10.6,a6/6=6+33/6-1=10.5<10.6... an=n+33/n-1≥2√33-1
所以:n=33/n
所以:n=√33
n=5或者n=6
a5/5=5+33/5-1=10.6, a6/6=6+33/6-1=10.5<10.6
∴an/n的最小值在n=6处取得,为10.5
展开
fnxnmn
2010-11-19 · TA获得超过5.9万个赞
知道大有可为答主
回答量:1.1万
采纳率:90%
帮助的人:6642万
展开全部
a1=33,a(n)-a(n-1)=2(n-1),
a(n)=a1+(a2-a1)+(a3-a2)+……+( a(n)-a(n-1))
=33+2+2×2+……+2(n-1)=33+n(n-1).
an/n=33/n+n-1,
函数33/n+n在(0,√33)上递减,在(√33,+∞)上递增,
5<√33<6,
n=5时,an/n=10.6.
n=6时,an/n=10.5.
∴an/n的最小值为10.5。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式