高等数学积分问题

 我来答
sjh5551
高粉答主

2016-08-11 · 醉心答题,欢迎关注
知道大有可为答主
回答量:3.8万
采纳率:63%
帮助的人:8071万
展开全部
√(2x-x^2) = √[1-(1-x)^2],
令 1-x = sint, 则 x = 1-sint, dx = -costdt
V = 2π ∫<π/2, 0> (1+sint) cost(-cost)dt
= 2π ∫<0, π/2> (1+sint) (cost)^2dt
= 2π ∫<0, π/2> (cost)^2dt + 2π ∫<0, π/2> sint(cost)^2dt
= π ∫<0, π/2> (1+cos2t)dt - 2π ∫<0, π/2> (cost)^2dcost
= π [t+(1/2)sin2t]<0, π/2> - (2π/3)[(cost)^3]<0, π/2>
= π^2/2 + 2π/3
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式