为什么无穷大量一定是无界量,而无界量不一定是无穷大?

 我来答
蟹蟹没有蟹黄堡
推荐于2019-08-28 · TA获得超过2.2万个赞
知道小有建树答主
回答量:125
采纳率:100%
帮助的人:3.1万
展开全部

无穷大量:是指在自变量的某个趋限过程(例)下因变量的变化趋势。若自变量x无限接近x0(或|x|无限增大)时,函数值|f(x)|无限增大,则称f(x)为x→x0(或x→无穷)时的无穷大量。例如f(x)=1/(x-1)是当x→1时的无穷大量,f(n)=n是当n→∞时的无穷大量。

无界函数的概念是指某个区间上的。若对于任意的正数m,总存在某个点,使得|f(x)|>m,则称该函数是区间上的无界函数。

总结:无穷大量是指大到我们无法计算的数,而这个数没有边界,因此无穷大量一定是无界量,而无界量是可以取到任意数,不论大小,所以无界量不一定是无穷大

举例:有函数Y=X*sinX,则此函数为无界函数,但不为无穷函数。因为当X趋于无穷时,函数值关于X轴上下摆动,总有某点Y=0,所以不为无穷。如图,蓝色表示的就是无界函数,与其相对的红色表示有界函数。


推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式