2个回答
展开全部
求微分方程 x²y'+xy=y²的通解
解:两边同除以 x²,得:y'+(y/x)=(y/x)²........①;令y/x=u,则y=ux.......②,y'=u'x+u;
代入①式得:u'x+2u=u²,即有(du/dx)x=u(u-2);分离变量得:du/[u(u-2)]=dx/x;
取积分得:∫du/[u(u-2)]=∫dx/x;积分之得:(1/2)∫[1/(u-2)-1/u]du=lnx+lnc₁=lnc₁x;
(1/2)[ln(u-2)-lnu]=ln√[(u-2)/u]=lnc₁x;故得√[(u-2)/u]=c₁x;(u-2)/u=cx²;(c=c₁²);
1-(2/u)=cx²; 2/u=1-cx²;u/2=1/(1-cx²);∴u=2/(1-cx²);
代入②式即得通解:y=2x/(1-cx²);
解:两边同除以 x²,得:y'+(y/x)=(y/x)²........①;令y/x=u,则y=ux.......②,y'=u'x+u;
代入①式得:u'x+2u=u²,即有(du/dx)x=u(u-2);分离变量得:du/[u(u-2)]=dx/x;
取积分得:∫du/[u(u-2)]=∫dx/x;积分之得:(1/2)∫[1/(u-2)-1/u]du=lnx+lnc₁=lnc₁x;
(1/2)[ln(u-2)-lnu]=ln√[(u-2)/u]=lnc₁x;故得√[(u-2)/u]=c₁x;(u-2)/u=cx²;(c=c₁²);
1-(2/u)=cx²; 2/u=1-cx²;u/2=1/(1-cx²);∴u=2/(1-cx²);
代入②式即得通解:y=2x/(1-cx²);
展开全部
let
u = y/x
du/dx = (1/x) dy/dx - y/x^2
dy/dx = x[du/dx + (1/x)u]
/
x^2.y'+xy=y^2
y' + y/x = (y/x)^2
x[du/dx + (1/x)u] + u = u^2
xdu/dx = u^2-2u
∫du/(u^2-2u) = ∫dx/x
(1/2)∫ [1/(u-2) - 1/u ] du = ∫dx/x
(1/2)ln| (u-2)/u| = ln|x| +C'
(u-2)/u = √(Cx)
(y/x -2)/(y/x) = √(Cx)
y/x -2 = y√(C/x)
y -2x =y√(Cx)
y( 1-√(Cx) ) = 2x
y =2x/( 1-√(Cx) )
u = y/x
du/dx = (1/x) dy/dx - y/x^2
dy/dx = x[du/dx + (1/x)u]
/
x^2.y'+xy=y^2
y' + y/x = (y/x)^2
x[du/dx + (1/x)u] + u = u^2
xdu/dx = u^2-2u
∫du/(u^2-2u) = ∫dx/x
(1/2)∫ [1/(u-2) - 1/u ] du = ∫dx/x
(1/2)ln| (u-2)/u| = ln|x| +C'
(u-2)/u = √(Cx)
(y/x -2)/(y/x) = √(Cx)
y/x -2 = y√(C/x)
y -2x =y√(Cx)
y( 1-√(Cx) ) = 2x
y =2x/( 1-√(Cx) )
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询