
怎么求这个式子的高阶无穷小
展开全部
x->0
(1+2x)^(1/2)
= 1+ (1/2)(2x) -(1/8)(2x)^2 + o(x^2)
= 1+x - (1/2)x^2 +o(x^2)
(1+3x)^(1/3)
=1 + (1/3)(3x) -(1/9)(3x)^2 +o(x^2)
=1 + x -x^2 +o(x^2)
(1+2x)^(1/2) -(1+3x)^(1/3)
=[1+x - (1/2)x^2 +o(x^2)] -[1 + x -x^2 +o(x^2)]
= (1/2)x^2 +o(x^2)
(1+2x)^(1/2) -(1+3x)^(1/3) : 2价无穷小
(1+2x)^(1/2)
= 1+ (1/2)(2x) -(1/8)(2x)^2 + o(x^2)
= 1+x - (1/2)x^2 +o(x^2)
(1+3x)^(1/3)
=1 + (1/3)(3x) -(1/9)(3x)^2 +o(x^2)
=1 + x -x^2 +o(x^2)
(1+2x)^(1/2) -(1+3x)^(1/3)
=[1+x - (1/2)x^2 +o(x^2)] -[1 + x -x^2 +o(x^2)]
= (1/2)x^2 +o(x^2)
(1+2x)^(1/2) -(1+3x)^(1/3) : 2价无穷小
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询