试求函数y=2x³-3x²的极值点及极值 50

 我来答
中职语文教学教研分享
2019-01-12 · 其疾如风,其徐如林,侵掠如火,不动如山
中职语文教学教研分享
采纳数:39750 获赞数:1199646

向TA提问 私信TA
展开全部
定义域为R
函数求导:y'=6x^2-6x=0
x=1或者x=0
函数在(-∞,0)和(1,+∞)单调递增;
在(0,1)单调递减
所以函数的极小值为f(1)=-1
极大值f(0)=0
极值点(1,-1),(0,0)
春天花花007
2019-01-12
知道答主
回答量:43
采纳率:0%
帮助的人:3.2万
展开全部
函数求导:y'=6x^2-6x=0
x=1或者x=0
函数在(-∞,0)和(1,+∞)单调递增;
在(0,1)单调递减
所以函数的极小值为f(1)=-1
极大值f(0)=0
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
丙元思65
2019-01-12 · 超过13用户采纳过TA的回答
知道答主
回答量:89
采纳率:29%
帮助的人:7.3万
展开全部
y=2x^3-3x^2 显然定义域为R, 则有y'=6x^2-6x 令y'=0 则有6x^2-6x=0, 解之,得极值点x1=0,x2=1 将极值点分别带入方程,得极值y1=0,y2=-1 则y'<0时,即0=0时,即x<=0或x>=1时,y为单调增函数;
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
segz85685
2019-01-12 · TA获得超过636个赞
知道小有建树答主
回答量:133
采纳率:52%
帮助的人:27.6万
展开全部
定义域为R
函数求导:y'=6x^2-6x=0
x=1或者x=0
函数在(-∞,0)和(1,+∞)单调递增;
在(0,1)单调递减
所以函数的极小值为f(1)=-1
极大值f(0)=0
y=2x^3-3x^2

显然定义域为R,
则有y'=6x^2-6x
令y'=0 则有6x^2-6x=0,
解之,得极值点x1=0,x2=1
将极值点分别带入方程,得极值y1=0,y2=-1
则y'<0时,即0=0时,即x<=0或x>=1时,y为单调增函数;
抱歉,不太懂这都是is啥,但还是希望能帮到你
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友61c1e6c
2019-01-12 · 贡献了超过146个回答
知道答主
回答量:146
采纳率:10%
帮助的人:13万
展开全部
y=2x^3-3x^2
y'=6x^2-6x=0
x(x-1)=0
x=0或x=1
∴极值点是x=0或x=1
y'=6x^2-6x=6x(x-1)
当y'>0时
即6x(x-1)>0
得x>1或 x1或x
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式