已知a,b,c分别是三角形ABC三个内角A,B,C的对边
1.若三角形面积为根号3/2,c=2,A=60°,求b,a的值。2.若acosA=bcosB,试判断三角形ABC的形状。拜托各位了!!救急~~~...
1.若三角形面积为根号3/2,c=2,A=60°,求b,a的值。 2.若acosA=bcosB,试判断三角形ABC的形状。 拜托各位了!!救急~~~
展开
1个回答
展开全部
1、c=2,A=60°
则AC边上的高=√3
b=AC=面积×2/高=(√3/2)×2/√3=1
因为b=c*sin60°
三角形为直角三角形
a=直角边=高=√3
2、由正弦定理
a/b=sinA/sinB
由acosA=bcosB
a/b=cosB/cosA
所以,sinA/sinB=cosB/cosA
sinAcosA=sinBcosB
sin2A=sin2B
2A=2B
或2A+2B=180°
所以,三角形为等腰三角形或直角三角形。(A=B或A+B=90°)
则AC边上的高=√3
b=AC=面积×2/高=(√3/2)×2/√3=1
因为b=c*sin60°
三角形为直角三角形
a=直角边=高=√3
2、由正弦定理
a/b=sinA/sinB
由acosA=bcosB
a/b=cosB/cosA
所以,sinA/sinB=cosB/cosA
sinAcosA=sinBcosB
sin2A=sin2B
2A=2B
或2A+2B=180°
所以,三角形为等腰三角形或直角三角形。(A=B或A+B=90°)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询