椭圆x²/36+y²/9=1的弦被点(4,2)所平分则弦所在的直线方程是

 我来答
看涆余
2010-11-22 · TA获得超过6.7万个赞
知道大有可为答主
回答量:7626
采纳率:85%
帮助的人:4307万
展开全部
设弦AB,A(x1,y1),B(x2,y2),
x1^2/36+y1^2/9=1,(1)
x2^2/36+y2^2/9=1,(2)
(1)-(2)式,
(x1^2-x2^2)/36+(y1^2-y2^2)/9=0,
1/4+[(y1-y2)/(x1-x2)]*{[(y1+y2)/2]/[(x1+x2)/2]},(3)
其中弦的斜率k=(y1-y2)/(x1-x2),
(y1+y2)/2=2,
(x1+x2)/2=4,
代入(3)式,
1/4+k*2/4=0,
k=-1/2,
∴弦所在直线方程为:(y-2)=-(x-4)/2,
即:y=-x/2+4.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式