设{An}为等差数列。Sn为数列{An}的前n项和,已知S7=7 S15=75.Tn为数列{Sn/n}的前项和。求Tn
展开全部
解:因为{An}为等差数列。Sn为数列{An}的前n项和,S7=7 S15=75
所以S7=7(a1+a7)/2=7a4=7
S15=15(a1+a15)/2=15a8=75
所以a4=1,a8=5
故a8=a4+4d=1+4d=5
所以d=1
所以a1=a4-3d=1-3=-2
所以an=a1+(n-1)d=n-3
故Sn=n(a1+an)/2=n(n-5)/2
所以Sn/n=(n-5)/2
故{Sn/n}也是等差数列
首项是S1/1=(1-5)/2=-2
所以Tn=n[-2+(n-5)/2]/2=n(n-9)/4
所以S7=7(a1+a7)/2=7a4=7
S15=15(a1+a15)/2=15a8=75
所以a4=1,a8=5
故a8=a4+4d=1+4d=5
所以d=1
所以a1=a4-3d=1-3=-2
所以an=a1+(n-1)d=n-3
故Sn=n(a1+an)/2=n(n-5)/2
所以Sn/n=(n-5)/2
故{Sn/n}也是等差数列
首项是S1/1=(1-5)/2=-2
所以Tn=n[-2+(n-5)/2]/2=n(n-9)/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询