三角函数的奇偶性怎么看?
看图像是否关于y轴对称,如果是,就是偶函数 如果图像关于原点对称,就是奇函数!
三角函数奇偶性判断依据
一、y=sinx
1、奇偶性:奇函数
2、图像性质:
中心对称:关于点(kπ,0)对称
轴对称:关于x=kπ+π/2对称
3、单调性:
增区间:x∈[2kπ-π/2,2kπ+π/2]
减区间:x∈[2kπ+π/2,2kπ+3π/2]
二、y=cosx
1、奇偶性:偶函数
2、图像性质:
中心对称:关于点(kπ+π/2,0)对称
轴对称:关于x=kπ对称
3、单调性:
增区间:x∈[2kπ-π,2kπ]
减区间:x∈[2kπ,2kπ+π]
三、y=tanx
1、奇偶性:奇函数
2、图像性质:
中心对称:关于点(kπ/2,0)对称
3、单调性:
增区间:x∈(kπ-π/2,kπ+π/2)
没有减区间
四、y=cotx
1、奇偶性:奇函数
2、图像性质:
中心对称:关于点(kπ/2,0)对称
3、单调性:
减函数:x∈(kπ,kπ+π)
没有增区间
三角函数奇偶性判断
定义域和值域
sin(x),cos(x)的定义域为R,值域为[-1,1]。
tan(x)的定义域为x不等于π/2+kπ(k∈Z),值域为R。
cot(x)的定义域为x不等于kπ(k∈Z),值域为R。
y=a·sin(x)+b·cos(x)+c的值域为
周期T=2π/ω