在数列{a n }中,a 1 =1,当n≥2时,其前n项和S n 满足 S n 2 = a n ( S n - 1 2
在数列{an}中,a1=1,当n≥2时,其前n项和Sn满足Sn2=an(Sn-12).(1)求an;(2)令bn=Sn2n+1,求数列{bn}的前项和Tn....
在数列{a n }中,a 1 =1,当n≥2时,其前n项和S n 满足 S n 2 = a n ( S n - 1 2 ) .(1)求a n ;(2)令 b n = S n 2n+1 ,求数列{b n }的前项和T n .
展开
(1)当n≥2时,a n =S n -S n-1 , ∴ S n 2 =( S n - S n-1 )( S n - )= S n 2 - S n - S n S n-1 + S n-1 , ∴S n-1 -S n =2S n S n-1 , ∴ - =2 , 即数列 { } 为等差数列,S 1 =a 1 =1, ∴ = +(n-1)×2=2n-1 , ∴ S n = ,…(4分) 当n≥2时,a n =s n -s n-1 = - = ∴ a n = …(8分) (2) b n = = = ( - ) , ∴ T n = [(1- )+( - )+…+( - )] = (1- )= |
收起
为你推荐: