函数y=log1/3(x^2-6x+5)的单调递增区间为?

 我来答
黑科技1718
2022-10-22 · TA获得超过5879个赞
知道小有建树答主
回答量:433
采纳率:97%
帮助的人:82万
展开全部
这是复合函数
先求定义域
x²-6x+5>0
所以(x-1)(x-5)>0
故x<1或x>5
因为y=log1/3(x)是减函数
那么求y=log1/3(x²-6x+5)的单调递增区间就是求y=x²-6x+5的单调递减区间
而y=x²-6x+5开口向上
所以单调递减区间为(-∞,1)
即y=log1/3(x²-6x+5)的单调递增区间是(-∞,1)
如果不懂,祝学习愉快!,6,底数=1/3∈(0,1),所以,x*x-6x+5单调递减时,y单调递增。
x*x-6x+5=(x-1)*(x-5)=(x-9)^2-4
即,x<1),1,对不起,这道题我也不会,0,函数y=log1/3(x^2-6x+5)的单调递增区间为
为什么不是(1,3)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式