叙述拉格朗日中值定理及其几何意义

 我来答
L白开水H61
2023-01-09 · TA获得超过146个赞
知道小有建树答主
回答量:1064
采纳率:100%
帮助的人:15.8万
展开全部

拉格朗日中值定理又称拉氏定理,它反映了可导函数在闭区间上的整体的平均变化率与区间内某点的局部变化率的关系。

拉格朗日中值定理又称拉氏定理,是微分学中的基本定理之一,它反映了可导函数在闭区间上的整体的平均变化率与区间内某点的局部变化率的关系。拉格朗日中值定理是罗尔中值定理的推广,同时也是柯西中值定理的特殊情形,是泰勒公式的弱形式(一阶展开)。

定义:如果函数f(x)在[a,b]上处处可导,则必有一ξ∈[a,b]使得f'(ξ)*(b-a)=f(b)-f(a)
f(x)为y,所以该公式可写成△y=f'(x+θ△x)*△x (0<1) 上式给出了自变量取得的有限增量△x时,函数增量△y的准确表达式。

拉格朗日中值定理的几何意义:如果连续曲线y=f(x)的弧AB上除端点外处处具有不垂直于X轴的切线,那么这弧上至少有一点C,使曲线在C点处的切线平行于弦AB。

拉格朗日介绍:

法国数学家。1754年开始研究数学,1766年接替了欧拉在柏林皇家科学院的职位,在那里工作达20年。1786年去法国,先后担任巴黎高等师范学校和多科工艺学校教授。他是18世纪仅次于欧拉的大数学家,工作涉及数论、代数方程论、微积分、微分方程、变分法、力学、天文学等许多领域。

著名的拉格朗日中值定理、拉格朗日余项、拉格朗日方程,对黎卡提方程的重要研究,对线性微分方程组的研究,对奇解与通解的联系的系统研究,都是这一时期的工作。他也是最先试图为微积分提供严格基础的数学家之一,这使他成为实变函数论的先驱。

他还以在数学上追求简明与严格而被誉为第1个真正的分析学家。拿破仑曾评价说:“拉格朗日是数学科学方面高耸的金字塔。”

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式