利用高斯公式计算曲面积分!急!急!急!

 我来答
惠企百科
2022-12-22 · 百度认证:北京惠企网络技术有限公司官方账号
惠企百科
惠企百科网是一家科普类综合网站,关注热门中文知识,集聚互联网精华中文知识,本着自由开放、分享价值的基本原则,向广大网友提供专业的中文知识平台。
向TA提问
展开全部

分别对x、y、z求偏导数后转化为一个三重积分后有,3∫∫∫ydxdydz 积分域为实心立方体。 到此可以直接用直角坐标积分这个三重积分得出结果。但是本人这里使用一个对称技巧。 

3∫∫∫ydxdydz=3∫∫∫[(y-1/2)+1/2] dxdydz =3∫∫∫(y-1/2) dxdydz +3∫∫∫(1/2) dxdydz =0 + 3∫∫∫(1/2) dxdydz =(3/2)×1 =3/2(1为这个单位立方体体积。

注意∫∫∫(y-1/2) dxdydz 因为这个立方体关于平面y-1/2=0对称,且y-1/2=0为奇次方,所以积分值为0)。


扩展资料:

高斯公式介绍:

1、基本概念:

首先,我们来看一下什么是高斯公式。

有一个定理如下:

设空间闭区域Ω是由分片光滑的闭曲面Σ所围成,函数P(x,y,z)、Q(x,y,z)、R(x,y,z)在Ω上具有一阶连续偏导数,则有

这里Σ是Ω的整个边界曲面的外侧,cos α、cos β、cosγ 是Σ在点(x,y,z)处的法向量的方向余弦。其中的两个公式均叫做高斯公式。

2. 应用:

在计算曲面积分时,可以利用高斯公式把曲面积分化成三重积分。

在应用时需要注意定理的适用条件。定理中有三个关键词:围成、具有一阶连续偏导数、外侧。在使用时,注意以下几点:

(1)先看看积分域是不是一个闭区域,如果不是,那么就需要补个面(一般是平面)。

(2)注意闭区域(无论是否是补面之后形成的)内是否在∂P/∂x、∂Q/∂y和∂R/∂z处连续(即奇点),如果是奇点,还需要用补面来把奇点去掉。

(3)注意题目给定曲面的侧,到底是内侧还是外侧。

下图可以简明地列出这几个点:

补面①一般是补平面,补面②一般是球面、椭球面、半球面、半椭球面等。灵活运用就可以了。

澳谱特
2024-11-25 广告
澳谱特科技(上海)专业生产纳米粒度仪。澳谱特纳米粒度及Zeta电位分析仪,Zeta电位仪具备多角度测量,毛细管电位样品池等技术优势,测量结果更具可比性。产品价格在19万至47万不等,欢迎咨询... 点击进入详情页
本回答由澳谱特提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式