求助 复变函数问题 res[(1-cosz)/z^5,0]

res[(1-cosz)/z^2022,0]=... res[(1-cosz)/z^2022,0]= 展开
 我来答
憩石为玉
2022-12-29 · 保持一颗好奇心!!!
憩石为玉
采纳数:47 获赞数:31

向TA提问 私信TA
展开全部

在上面的问题中,我们为您解答了求复变函数柿子的问题。

现在我们来继续解答您的问题,也就是求复变函数res[(1-cosz)/z^5,0]的柿子。

首先,我们可以将这个柿子的式子带入复变函数的柿子定义来求解:

res[(1-cosz)/z^5,0]=lim_(z->0)((1-cosz)/z^5)

根据极限的定义,我们可以知道,当z趋近于0时,(1-cosz)/z^5的值将会趋近于某一个值。

接下来,我们考虑对(1-cosz)/z^5进行化简,以便更好地求解这个柿子。

我们可以使用一些数学公式来进行化简:

  • cosz=1-2sin^2(z/2)

  • sin^2(z/2)=(1-cosz)/2

  • 将这两个公式带入(1-cosz)/z^5中,我们得到:

    (1-cosz)/z^5=(1-(1-2sin^2(z/2)))/z^5=(2sin^2(z/2))/z^5=2/z^3*sin^2(z/2)

    我们还可以使用sin(2θ)=2sinθcosθ的公式将sin^2(z/2)化为sin(z)的形式:

    2/z^3sin^2(z/2)=2/z^3(sin(z))^2/4=1/2*(sin(z))^2/z^3

    综上所述,我们得到:

    res[(1-cosz)/z^5,0]=lim_(z->0)(1/2*(sin(z))^2/z^3)

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式