求矩阵A=(-2 1 1 0 2 0 -4 1 3) 的特征值和特征向量
1个回答
展开全部
1.求出特征值
|A-λE|=
-2-λ 1 1
0 2-λ 0
-4 1 3-λ
= (2-λ)[(-2-λ)(3-λ)+4]
= (2-λ)(λ^2-λ-2)
= (2-λ)(λ-2)(λ+1)
所以A的特征值为 -1,2,2
2,对每个特征值λ求出 (A-λE)X = 0 的基础解系.
对特征值 -1,把 A+E 用初等行变换化成
1 0 -1
0 1 0
0 0 0
得基础解系:(1,0,1)'.
所以A的属于特征值-1的全部特征向量为 k1(1,0,1)^T,k1为任意非零常数
对特征值 2,把 A-2E 用初等行变换化成
1 -1/4 -1/4
0 0 0
0 0 0
得基础解系:(1,4,0)',(1,0,4)'
所以A的属于特征值 2 的全部特征向量为 k2(1,4,0)'+k3(1,0,4)',k2,k3为不全是0的任意常数
|A-λE|=
-2-λ 1 1
0 2-λ 0
-4 1 3-λ
= (2-λ)[(-2-λ)(3-λ)+4]
= (2-λ)(λ^2-λ-2)
= (2-λ)(λ-2)(λ+1)
所以A的特征值为 -1,2,2
2,对每个特征值λ求出 (A-λE)X = 0 的基础解系.
对特征值 -1,把 A+E 用初等行变换化成
1 0 -1
0 1 0
0 0 0
得基础解系:(1,0,1)'.
所以A的属于特征值-1的全部特征向量为 k1(1,0,1)^T,k1为任意非零常数
对特征值 2,把 A-2E 用初等行变换化成
1 -1/4 -1/4
0 0 0
0 0 0
得基础解系:(1,4,0)',(1,0,4)'
所以A的属于特征值 2 的全部特征向量为 k2(1,4,0)'+k3(1,0,4)',k2,k3为不全是0的任意常数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询