如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,∠BAD=60°,四边形BDEF是矩形,平面BDEF⊥平面ABCD

如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,∠BAD=60°,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,H是CF的中点.(Ⅰ)求证:AC... 如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,∠BAD=60°,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,H是CF的中点.(Ⅰ)求证:AC⊥平面BDEF;(Ⅱ)求三棱锥H-BDF的体积. 展开
 我来答
余庆Dc
推荐于2016-08-21 · TA获得超过141个赞
知道答主
回答量:148
采纳率:88%
帮助的人:75.7万
展开全部
(Ⅰ)证明:因为四边形ABCD是菱形,
所以AC⊥BD.
因为平面BDEF⊥平面ABCD,且四边形BDEF是矩形,
所以 ED⊥平面ABCD,…(3分)
又因为AC?平面ABCD,
所以ED⊥AC.
因为ED∩BD=D,所以AC⊥平面BDEF.…(5分)
(Ⅱ)解:取BC得中点P,连接DP.
因为四边形ABCD是菱形,且∠BAD=60°,
所以△DBC为等边三角形,所以DP⊥BC,
DP=
3
2
BC=
3
.…(7分)
又由(1)知FB⊥平面ABCD且DP?平面ABCD,
所以DP⊥FB,又FB∩BC=B,
所以DP⊥平面FBC,S△BFH
1
2
S△BFC
1
2
×
1
2
×BC×BF=
3
2
,…(10分)
所以VH?BDFVD?BFH
1
3
×S△BFH×DP=
1
3
×
3
2
×
3
3
2
.…(12分)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式