卡尔曼滤波器的两个重要假设
1个回答
展开全部
理论上,kalman滤波器需要三个重要假设:
1)被建模的系统是线性的;
2)影响测量的噪声属于白噪声;
3)噪声本质上是高斯分布的。
第一条假设是指k时刻的系统状态可以用某个矩阵与k-1时刻的系统状态的乘积表示。余下两条假设,即噪声是高斯分布的白噪声,其含义为噪声与时间不相关,且只用均值和协方差就可以准确地为幅值建模。
在kalman滤波器滤波器应用中,一般考虑三种运动:
1)动态运动:这种运动是我们期望的前次测量时系统状态的直接结果,如匀速运动等。
2)控制运动:这种运动是我们期望的,由于某种已知的外部因素以某种原因施加于系统,如加速运动等。
3)随机运动:随机的无规则运动,在Kalman滤波器中,至少是可以用高斯模型有效地来建模。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询