设函数f(x)=ax-2-lnx(a∈R).(Ⅰ)若f(x)在点(e,f(e))处的切线为x-ey-2e=0,求a的值;(Ⅱ)
设函数f(x)=ax-2-lnx(a∈R).(Ⅰ)若f(x)在点(e,f(e))处的切线为x-ey-2e=0,求a的值;(Ⅱ)求f(x)的单调区间;(Ⅲ)当x>0时,求证...
设函数f(x)=ax-2-lnx(a∈R).(Ⅰ)若f(x)在点(e,f(e))处的切线为x-ey-2e=0,求a的值;(Ⅱ)求f(x)的单调区间;(Ⅲ)当x>0时,求证:f(x)-ax+ex>0.
展开
展开全部
(Ⅰ)∵f(x)=ax-2-lnx(x>0),
∴f'(x)=a-
=
,
又f(x)在点(e,f(e))处的切线为x-ey-2e=0,
∴f'(e)=a-
=
,故a=
;
(Ⅱ)由(Ⅰ)知,f'(x)=a-
=
(x>0),
当a≤0时,f'(x)<0在(0,+∞)上恒成立,
∴f(x)在(0,+∞)上是单调减函数,
当a>0时,令f'(x)=0,则x=
,
令f'(x)<0,则0<x<
,f'(x)>0,则x>
,
∴f(x)在(0,
)上单调递减,在(
,+∞)上单调递增,
综上可得:当a≤0时,f(x)的单调减区间为(0,+∞),
当a>0时,f(x)的单调减区间为(0,
),f(x)的单调增区间为(
,+∞);
(Ⅲ)当x>0时,要证f(x)-ax+ex>0,即证ex-lnx-2>0,
令g(x)=ex-lnx-2(x>0),只需证g(x)>0,
∵g'(x)=ex-
,由指数函数和幂函数的单调性知,g‘(x)在(0,+∞)上递增,
又g'(1)=e-1>0,g'(
)=e
-3<0,∴g'(1)?g'(
)<0,
∴g'(x)在(
,1)内存在唯一的零点,则g'(x)在(0,+∞)上有唯一零点,
设g'(x)的零点为t,则g'(t)=et-
=0,即et=
(
<t<1),
由g'(x)的单调性知:
当x∈(0,t)时,g'(x)<g'(t)=0,当x∈(t,+∞)时,g'(x)>g'(t)=0,
∴g(x)在(0,t)上为减函数,在(t,+∞)上为增函数,
∴当x>0时,g(x)≥g(t)=et-lnt-2=
-ln
-2=
∴f'(x)=a-
1 |
x |
ax?1 |
x |
又f(x)在点(e,f(e))处的切线为x-ey-2e=0,
∴f'(e)=a-
1 |
e |
1 |
e |
2 |
e |
(Ⅱ)由(Ⅰ)知,f'(x)=a-
1 |
x |
ax?1 |
x |
当a≤0时,f'(x)<0在(0,+∞)上恒成立,
∴f(x)在(0,+∞)上是单调减函数,
当a>0时,令f'(x)=0,则x=
1 |
a |
令f'(x)<0,则0<x<
1 |
a |
1 |
a |
∴f(x)在(0,
1 |
a |
1 |
a |
综上可得:当a≤0时,f(x)的单调减区间为(0,+∞),
当a>0时,f(x)的单调减区间为(0,
1 |
a |
1 |
a |
(Ⅲ)当x>0时,要证f(x)-ax+ex>0,即证ex-lnx-2>0,
令g(x)=ex-lnx-2(x>0),只需证g(x)>0,
∵g'(x)=ex-
1 |
x |
又g'(1)=e-1>0,g'(
1 |
3 |
1 |
3 |
1 |
3 |
∴g'(x)在(
1 |
3 |
设g'(x)的零点为t,则g'(t)=et-
1 |
t |
1 |
t |
1 |
3 |
由g'(x)的单调性知:
当x∈(0,t)时,g'(x)<g'(t)=0,当x∈(t,+∞)时,g'(x)>g'(t)=0,
∴g(x)在(0,t)上为减函数,在(t,+∞)上为增函数,
∴当x>0时,g(x)≥g(t)=et-lnt-2=
1 |
t |
1 |
et |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载